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A notion of local observer inspired by the work of Segal is introduced here in the 
Hilbert space theory of quantum mechanics. The local observer finds a mathe- 
matical place in the Hilbert space through local negation or complementation. A 
logicomathematical theory of local negation is presented and its implications for 
quantum logic and the problem of measurement are discussed. The setting is 
constructivist mathematics and the main result of the paper states that the 
introduction of a local observer implies the nonorthocomplementability of the 
whole Hilbert space even in the finite-dimensional case. Making a mathematical 
place for the observer (the "projector") thus modifies the structure of the 
observables or the system of the projections, in accordance with a nonclassical 
theory of quantum-mechanical measurement. 

The problem of the observer is a long-standing concern of quantum 
mechanics and attempts at formulating a coherent theory of the observer 
have been apparently unsuccessful. In this paper, I want to describe a 
mathematical notion of the observer inspired by the work of I. E. Segal 
(1976) in his chronogeometric theory of relativity. 

1. LOCAL OBSERVER 

Segal defines the observer in the following way: let M be a globally 
hyperbolic (causal) manifold. Then a prefactorization is a pair (S, q0) where 
S is a C ~ manifold, ~0 is a diffeomorphism of T X S onto M, and T is a real 
interval, having the properties that 

1. Vx ~ S, t ~ q0(t, x)  is a timelike arc in M 
2. Vt ~ T, x ~ r x)  defines a spacelike submanifold of M. 

For  two prefactorizations (S, q0) and (S',  q0') to be equivalent there must 
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exist diffeomorphisms f and g of R I onto R ~ and S onto S' such that f is 
orientation-preserving, and 

cp(f  X g ) - '  = ~o' 

A factorization is simply an equivalence class of such prefactorizations. A 
local observer in that context is a prefactorization (U, rp,) on M with 
~ol = ~0lT x U, where T and U are connected open subsets of R I and S; here 
T is only diffeomorphic to R' (~PlT x U means the restriction of q9 to 
TxU).  

Local observers, in Segal's theory, may also have the properties of 
being metric, homogeneous, physical, or covariant, all properties associated 
with the spaces on which the local observer is defined. In Segal's words, 
"local observer" is the mathematical counterpart of the physical concept of 
"local Lorentz frame." I am interested here only in one part of Segal's 
theory, his notion of local observer. If we start from the fact that an 
n-dimensional manifold is a topological space which is locally homeomor- 
phic to R n, we can ask ourselves if a characterization of the observer as 
"local observer" is at all possible in QM; if there could be a treatment of 
the observer in QM similar to Segal's notion. 

2. H I L B E R T  S P A C E  

The usual presentation of QM requires the analytical apparatus of 
Hilbert space as a linear vector space with complex coefficients; among all 
linear manifolds that constitute a Hilbert space, the closed ones or the 
subspaces are of special interest for physics (i.e., QM here), since notions 
like orthogonal vectors, orthogonal complements, projections, etc., can be 
defined on them. It is a well-known fact that not all linear manifolds are 
closed ~ and that the set of all linear subsets of the infinite-dimensional 
Hilbert space is not orthocomplementable2: it is this result which I want to 
exploit, keeping in mind that a Hilbert space is a metric and a topological 
space. The interesting fact about Hilbert space from a physical point of view 
is that it permits the definition of orthogonality 

( f , g ) = O  

written f .J_ g; the orthogonal complement of f ,  f _L obeys the Boolean rule 

ICf. Halmos (1957), p. 22. 
2Cf. Jauch (1968), p. 122. 
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f • _L = f and f .L forms a subspace of ~,. For QM, it is important to notice 
that there is a bijection between subspaces and projections, i.e., the linear 
operators E such that E E * = E  for E* the adjoint of E defined by 
(E*)* = E (if E* = E, then E is a self-adjoint or Hermitian operator). The 
spectral theorem states that there is a bijection between self-adjoint opera- 
tors and spectral measures on (the Borel sets of) the real line R t and the von 
Neumann "dogma" states that there is a bijection between self-adjoint 
operators and the observables of QM. 3 Let us look at the orthogonal 
complement: we have seen that f • j- = f ;  consequently, the orthogonal 
complement corresponds to the orthocomplement ( a - ) - =  a of a Boolean 
lattice, where ~< corresponds to --*, a -  to - a, a n b to a A b, and a U b to 
a v b. Orthocomplementation induces an involutive antiautomorphism 
(a*)*=  a on the field of a vector space. It is such an antiautomorphism 
which yields Gleason's important theorem (1957) stipulating that any prob- 
ability measure/~(A) on the subspaces of ~ has the form 

/z(A) = Tr( w e  A ) 

where Tr means T r X =  Er(qOr, X{]gr) for any complete system of normalized 
orthogonal vectors %, PA denotes the orthogonal projection of A, and W is a 
Hermitian operator which satisfies 

W > 0, Tr W = 1 and W2 ~< W 

Other spaces, like Banach spaces, which lack the restriction of orthogonal- 
ity, do not seem to be suited to the needs of QM. 

3. LOCAL NEGATION 

I want to introduce the observer in QM with the help of a notion of 
local negation: local negation induces local complementation which pro- 
vides the "location" of the local observer. I think of local negation in 
analogy with local notions in mathematics, especially topology; e.g., for 
metrization, local finiteness means that for a family C of subsets of a 
topological space each point of the space has a neighborhood which 
intersects only a finite number of members of C. Local negation can be 

3Von Neumann's dogma has been challenged in 1952 by Wick, Wightman, and Wigner, who 
introduced superselection rules showing that there exist Hermitian operators that do not 
correspond to observables; on the other side, Park and Margenau argue that there are 
observables, for example, the noncommuting x and z components of spin, which are not 
represented by Hermitian operators. Cf. my paper "The Use of the Axiomatic Method in 
Quantum Mechanics" in Philosophy of Science, 38(3), 429-437 ( 1971 ). 
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thought as the logical counterpart of the relative complement in topology, 
while Boolean negation ( - - a  = a) corresponds to the absolute comple- 
ment. 

I come now to the logicomathematical theory of local negation. The 
setting is constructivist mathematics. There are various approaches to the 
constructivization of classical mathematics, intuitionism (Brouwer), predi- 
cativism (Weyl, Lorenzen), Russian constructivism, numerical constructiv- 
ism & la Bishop, etc . . . . .  Here I borrow some notions from Brouwer's 
intuitionism and Bishop's constructivism, because they fit particularly well 
in the scheme of local negation (or complementation). Neither Brouwer nor 
Bishop has developed such a theory of local negation; Bishop, for example, 
is led in his theory to distinguish between negation and complementation. 
But there are various constructivizations of the theory of Hilbert spaces that 
could serve as the general context of the notion of local negation. Von 
Neumann (1950) himself was not unaware of those constructive aspects of 
mathematics in his proof of the existence of a complete orthonormal set in 
any (separable) linear space; von Neumann gives two versions of his proof, 
one by construction and one by set-theoretic means. I begin by stating some 
notions. 

Definition 1. The domain D is the collection of mathematical properties 
or assertions pertaining to a mathematical theory--Brouwer  used here the 
concept of species instead of set, because he wanted to emphasize the 
intensional character of the notion of mathematical property in contrast 
with notions like the definition of extensional equality: 

Definition 2. The exterior E is the local negation or complement of 
domain D; in symbols 

E D = d f - n D  

for this notion of local complement, ~ D = D does not obtain. 

Definition 3. An effinite sequence is a sequence (of natural numbers, 
for example) that has an initial bound (0, for example) but no terminal 
bound (~0, for example)--Brouwer called such sequences "infinitely pro- 
ceeding sequences" in order to stress their potential infinity. Finite seq- 
uences are sets. 

In the present context, D is the domain of closed linear manifolds of a 
Hilbert space ~ and E its local complement E ~ ~ - D. This is the usual 
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topology of sets; I assume that D and E are not sets, but effinite sequences; 
then set complementat ion does not obtain and D and E are to be considered 
as effinite sequences (of singular instances) of mathematical  assertions (and 
of their negations). Now we need an evaluation of those assertions in terms 
of 0 and 1. The idea here, which is of frequent use in intuitionistic 
mathematics,  is to associate to every assertion (or closed formula) a natural 
number  which calculates it, in the sense that it gives the formula an effective 
assignment in the sequence of natural numbers; we have thus a mapping 

~: N---, N 

which sends every mathematical  assertion into a natural number  once it is 
evaluated by a natural number  or a sequence of natural numbers (this 
mapping is often called a complementary mapping in intuitionistic litera- 
ture). 

A model for local negation is a quadruple M = (DM, EM,CM, CpM), 
where D and E are defined as above, C is a relation or order or superposi- 
tion for domains DMo, DM, . . . . .  DM. and qo a map 

~PM : Form ---, (0, 1) 

which evaluates formulas (of a language) in the following manner: 
1. r - - - -  1, iff A ~ DMo 
2. q0m(~A)[n ] = l, iff ~ A  ~ E~ 
3. ~pu(A A B)[n X m] = 1, iff A ~ Dmo and B ~ DMo 
4. r  i f f A ~ D u o  or B ~ D u o  

loc 
5. q~u(A --* B)[n m] = 1, iff A ~ DMo is transformed exponentially 

(or continuously) into B ~ Duo 
6. eptct(3xAx)[n+m+l.. .]=l,  i f f~An~DMo 
7. epm(VxAx)[n • m- �9 �9 • l] = 1, iff I-IAn ~ DMo 
8. qOu( -.~r.Ax)[n • m • l. . .] = I, iff I-IA .... ~ Duo 
Remarks. (a) Although D and E are not sets, we have the usual symbol 

for convenience; (b) the universal quantifier Vx is meant  to apply only to 
finite sets while the new quantifier F_,x applies to effinite sequences (the 
n, m, I are natural numbers); (c) clause 5 shows that local implication can be 
thought of as an arc or a closed topological path in a locally connected 
space. 

With this machinery, it is possible to formulate the notion of local 
complementat ion which follows from the notion of local negation, a 

4For more details on the theory of local negation, I refer to my "Intuitionistic Logic and Local 
Mathematical Theories" in Zeitschrift fiJr rnathematische Logik und Grundlagen der Mathematik 
23(5), 411-414 (1977). 
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4. LOCAL C O M P L E M E N T A T I O N  

I have exposed thus far a logical theory of local negation (or comple- 
mentation). Here I apply this notion to the theory of Hilbert spaces. 
Consider the Hilbert space as a metric and a topological space; D is in this 
case the sequence of subspaces Of the Hilbert space and E is obtained by 
local complementation; E is the " locat ion" of the local observer. We shall 
see that the Hilbert space can make room for a notion of local observer: the 
observer becomes the (local) complement  of the observable, i.e., the closed 
linear manifolds of the Hilbert s p a c e - - o f  course the whole Hilbert space 
contains all bounded linear transformations (defined on open subsets) and 
is therefore not orthocomplementable.  But here we obtain nonorthocomple- 
mentability in a different way. [Remember that in a finite-dimensional 
space, every linear manifold is closed; cf. Halmos (1957).] 

Theorem. The Hilbert space admits the observer through local 
negation (or complementa t ion) - - tha t  is, we do not have orthocom- 
plementation on the whole Hilbert space even in the finite-dimen- 
sional case. 

Before we prove the main theorem and in order to make the proof  
easier, we prove some lemmas and give a few definitions. 

Lemma 1. The sequence of closed linear manifolds in a Hilbert 
space has a local complement. 

Proof Let ~ be an n-dimensional Hilbert space and let F • be the 
sequence of closed linear manifolds (or subspaces) f • of ~ .  Set F • = F - ,  
the closure of all f • One can now define the local complement  E ( F - )  or 
F + of F -  such that F + ~ ~ - F -  and it is an open manifold of ~ .  �9 

From the topology, we pass to the metric of ~ .  

Definition 4. A is a subsequence of B, iff A c B. 

Remark. The usual concept of limit is applicable to sequences and 
subsequences with minor modifications, which are not essential here. 

Definition 5. A subsequence A is local (or located), 5 if the distance 

Vx ~ ~ [ p ( x , A ) -  i n f (p (x ,  y)" y ~ A)] 

from x to A exists. 

Lemma 2. A local subsequence A has an open complement.  

5This notion of located subset has been introduced by Brouwer. E. Bishop has put it to use in 
his Foundations of Constructive Analysis, McGraw-Hill, New York (1967), p. 82. 
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Proof. The metric complement - A of a subsequence A is the sequence 

- A=-(x: x ~ , p ( x , A ) > O )  

which is open, since 

Vx, y ~ ~)C[p(x, A) <~ p(x ,  y)+p(y,  A)] �9 

The observer could find here a topological and a metric location as the 
local complement of the closed sequence of subspaces of ~ .  In order to 
further constructivize this result, I introduce the topological boundary 
operator b (which is to be interpreted as the boundary between the observ- 
a b l e - o r  the observed--and the observer). 

Definition 6. The boundary of a subsequence A of a topological space 
X is the sequence of all points x which are interior to neither A nor X -  A. 

Proof of the Theorem. We have the relations 

and 

thus 

D = ~ E U b ( D )  

D({IC)= E(~C)Ub(E(~}~)) 

The interior of E, i.e., E ~ is the complement of the closure of the 
complement of E and is thus open; also we have 

E = E  o 

For any x, D(~x) means that x ~ E. So for some a ~ ~)C, we have 

E(a)=D(-,a)-b(D(-~a)) 

on the other hand, the closure of D, i.e., D-,  implies that 

b(n(a) )=a-  f ~ ( D - a ) -  

hence 

a-=aWb(D(a))  
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and 

and 

a D ( g C )  - -  - , a  

which shows that E is disjoint from its boundary, that is, it is open and 
consequently the whole Hilbert space D ( ~ ) U  E(~,)  is not orthocomple- 
mentable, since local complementation excludes ( a - ) -  = a. 6 �9 

Remark. The effect of abandoning orthocomplementation amounts to 
adopt an indefinite metric which may, in fact, be more convenient for some 
physical theories (e.g., quantum field theory). 

The significance of the theorem lies in the fact that a mathematical 
location is secured for the observer. The presence of the (local) observer 
"opens up," through the local open complement, the sequence (classically, 
the set) of closed linear manifolds of the Hilbert space. The implications of 
the theory of local complementation are far-reaching, if one considers 
quantum logic and the problem of measurement in QM. From the local 
point of view here discussed, it is clear that the underlying logic of QM is 
not classical, but is of a constructivist variety close to intuitionist logic with 
a pseudocomplement. Further, the theory of local 'observer offers a new 
solution to the various paradoxes of measurement. In the next two sections, 
I briefly sketch the impact of the notion of local observer on those 
problems. 

5. QUANTUM LOGIC 

Recently, many workers in the field of the foundations of QM, 
Finkelstein, Putnam, Bub, and Demopoulos among others, have advocated 
the idea of a quantum logic. The result of Kochen and Specker (1967), 
which is closely linked with Gleason's theorem, is seen as the final blow to 
(noncontextual) hidden-variable theories. Kochen and Specker have shown 
that in a space of more than two dimensions, there is no two-valued 
homomorphism h: A ~ A' from the algebra A of partial operations on 

6Orthocomplementation requires that 

( a - ) - = a ,  a - A a = ~ ,  and a ~ b ~ b - ~ a -  



Quantum Mechanics 1149 

compatible observables to a commutat ive Boolean algebra A'. The partial 
algebra of quantum mechanical propositions is consequently not embedda- 
ble in a Boolean algebra [for a recent exposition, see Bub (1976)]. A partial 
algebra is a set A with a binary relation of compatibility ~, which is 
symmetric and reflexive, but not transitive; it is also closed under the 
operations of addition and multiplication from ,[ to A and closed under the 
scalar product; we have 

(1) I~<A 2 (2) a~a (3) Va, b~A(a~b~b~a)  
(4) (a+b)lc, a b ~ c ;  )~a~b 

and the unit element; it is a partial algebra because its operations are partial 
- - a n  observable does not necessarily possess a value for each of its states 
and it is a partial Boolean algebra since the set of idempotent elements 
a.  a = a of the partial algebra constitutes a Boolean algebra with 

aAb=a.b, aVb=a+b-a .b ,  a - = l - a  and ( a - ) - = a  

Instead of a partial Boolean algebra, one can construct a partial Heyting or 
pseudo-Boolean algebra in which the relative complement replaces the 
Boolean complement. 7 For a lattice B, an element c of B is the pseudocom- 
plement of a relative to b, if it is the largest element such that 

anc<~b 

it is thus the largest open subset different from a, 

a ~< ---,~ a 

for ~a ,  the local negation of a. Such a treatment would permit still a further 
"constructivization" of QM. 

6. T H E  P R O B L E M  OF M E A S U R E M E N T  

The topological theory of the local observer bears also on the problem 
of measurement, and the notion of local observer could help clarify some 
baffling problems of measurement in QM. Let us discuss briefly the 
Eins te in-Podolsky-Rosen paradox. Let I and II be two systems which 

7Bub (1976) draws here upon results of MacNeill and Petersma and states that a Heyting 
algebra as a distributive lattice is embeddable in a Boolean algebra; but it should be noted that 
the result is valid only for complete Heyting algebras enriched with additional algebraic 
structure, i.e., a canonical extension in this case. 
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eventually will interact; the states of the two systems are described in a 
two-dimensional vector space and q0 • and q, + represent a complete 
orthonormal set of vectors for systems I and II, respectively. The pure state 
of the joint system is defined by 

(I} = 2 -  I/2 [(qO+| ~b+ ) + (Cp_| ~_ )] 

where (I) is the probability and | the tensor product; probability is defined 
by 

prob(ak) = El(q0k,rlq,)l 2 
k 

for a k the eigenvalues of the operator ~ which corresponds to the observable 
A; Iq') is the normalized state vector of the system and the [cpk, r) are the 
normalized eigenvectors of d~. After spatial separation, system I is in the 
state qo + with probability 1/2; for system II, we have 

since 

prob II(q~ •  = 1/2 

prob I(V +_)+prob II(~b •  = 1 / 2 +  1/2 = 1 = ~b 

The logic of the paradox implied that the state of system II could be 
determined from the state of system I without having direct access to system 
I I - - in  Einstein's view, there was an element of reality here. The paradox is 
usually solved by the simple remark (made originally by Bohr) that after the 
measurement, the system ( I+I I )  is in a composite state (WR| or in a 
mixture and not in a single state W. Measurement in a way does not 
conserve the eigenvectors (and eigenvalues) of each of the system. Some, like 
Wigner, introduce at this very point the consciousness of the observer; 
others invoke " the  state of the knowledge of the state," which ultimately 
would explain the probabilistic structure of the quantum world. From my 
point of view, the observer is not endowed with any particular (mysterious) 
property of consciousness or knowledge--it  is a local observer of which we 
have only a mathematical description or localization. The boundary be- 
tween the observed and the observer could be seen as a von Neumann's cut, 
but I prefer to interpret it in a purely topological sense. 

Let us mention as a further illustration J. S. Bell's theory (1965) of local 
hidden variables ("local" is taken here in the sense of spatial separation or 
relativistic causality). The much-debated Bell inequality concerns the mea- 
surement of spin components A, B, C of n particles and could be written 

n[A+B + ] ~< n[A+C+ ]+n[B+C + ] 
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Experiments in QM violate (most of the time) this inequality and some 
invoke as a solution of this new paradox principles of wholeness or integrity 
of the quantum world [cf. the works of Bohm or d'Espagnat (1979)]. Others 
have used the many-worlds interpretation of Everett without noticing its 
inconsistency, which can be shown quite easily: in Everett's formulation, the 
wave function ~k must take all its values in the complete ramification of the 
"universal wave equation," that is, it must take 2 s0 values, but there is 
certainly not more than a denumerable infinity of possible measurements, 
that is No; there is no bijection between 2 ~0 and N 0, and in view of Everett's 
thesis about the isomorphism (or homomorphism) between the formalism 
and the interpretation of QM, this suffices to refute the many-worlds 
interpretation. As in the case of the Einstein-Podolsky-Rosen paradox, one 
could use again the standard Bohr answer: measurement or the observer 
modifies the original phenomenal situation in such a way that, for example, 
orthogonal probability measures (or measures on orthogonal subspaces) are 
not conserved, since the effect of measurement (or local observer) is to 
"open up" the Hilbert space of the observables through the admission of a 
local open complement of the closed linear manifolds of the Hilbert space. 

7. CONCLUSION 

In relativity theory, the local observer is a local Lorentz frame of 
reference which is part of the objective picture of the physical universe 
described by the theory. For QM, a theory of the physical observer whould 
have to take into account some kind of electromagnetic interaction (which I 
would call "projector"  in analogy with the notion of projection) between 
the observer and the observed system as Geoffrey Chew has pointed out. I 
have limited myself to a mathematical description of the "location" of the 
observer as the local complement of the set of observables in the Hilbert 
space of QM; the fact that, in the spirit of Segal's theory, the mathematical 
description of the local observer defines it as a prefactorization in relativity 
and as an open subset or an open submanifold of a Hilbert space in QM 
does not preclude a further characterization of the observer in terms of its 
physical attributes or interactions. The securing of a place for the observer 
in the Hilbert space of QM is only a first step in that direction. 

ACKNOWLEDGMENTS 

I wish to thank Professor Geoffrey Chew of the Physics Department of the University of 
California at Berkeley for his invitation and discussions on the theme of this paper in April 
1980. I also thank the referees for many comments that have helped clarify the paper. 



1152 Gauthier 

R E F E R E N C E S  

Bell, J. S. (1964). Physics, i, 195. 
Bub, J. (1976). The Interpretation of Quantum Mechanics, Dordrecht, Reidel. 
D'Espagnat, B. (1979). A la recherche du reel, Paris, Gauthier-Villars. 
Gleason, A. M. (1957). "Measures on the Closed Subspaces of a Hilbert Space," in Journal of 

Mathematics and Mechanics, 6, 885-893. 
Halmos, P. R. (1957). Introduction to Hilbert Space and the Theory of Spectral Multiplicity, 2nd 

ed., Chelsea, New York. 
Jauch, J. M. (1968). Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachu- 

setts. 
Kochen, S., and Specker, E. P. (1967). "The Problem of Hidden Variables in Quantum 

Mechanics," in Journal of Mathematics and Mechanics, 17, 59-87. 
Segal, I. E. (1976). Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New 

York. 
von Neumann, J. (1950). Functional Operators, Vol. II: The Geometry of Orthogonal Spaces, 

Princeton University Press, Princeton, New Jersey. 


